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Abstract

Cross-Domain Recommendation (CDR) has been proven to
effectively alleviate the data sparsity problem in Recom-
mender System (RS). Recent CDR methods often disentangle
user features into domain-invariant and domain-specific fea-
tures for efficient cross-domain knowledge transfer. Despite
showcasing robust performance, three crucial aspects remain
unexplored for existing disentangled CDR approaches: i) The
significance nuances of the interaction behaviors are ignored
in generating disentangled features; ii) The user features are
disentangled irrelevant to the individual items to be recom-
mended; iii) The general knowledge transfer overlooks the
user’s personality when interacting with diverse items. To this
end, we propose a Graph Disentangled Contrastive frame-
work for CDR (GDCCDR) with personalized transfer by
meta-networks. An adaptive parameter-free filter is proposed
to gauge the significance of diverse interactions, thereby facil-
itating more refined disentangled representations. In sight of
the success of Contrastive Learning (CL) in RS, we propose
two CL-based constraints for item-aware disentanglement.
Proximate CL ensures the coherence of domain-invariant fea-
tures between domains, while eliminatory CL strives to dis-
entangle features within each domains using mutual informa-
tion between users and items. Finally, for domain-invariant
features, we adopt meta-networks to achieve personalized
transfer. Experimental results on four real-world datasets
demonstrate the superiority of GDCCDR over state-of-the-art
methods.

Introduction

Recommender systems (RS) find wide-ranging applications
on consumer platforms such as Kuaishou and Amazon, pri-
marily due to their effectiveness in capturing personalized
user preferences. However, the presence of limited user-
item interactions in certain scenarios (i.e., data sparsity is-
sue) places difficulties in creating precise interest models. To
tackle this, Cross-Domain Recommendation (CDR) seeks to
transfer valuable knowledge from the source domain to im-
prove performance on the target domain.

The existing CDR methods can be roughly divided into
two branches, which we call blended methods and disentan-
gled methods. Blended approaches employ diverse transfer
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layers to combine the representations learned within their re-
spective domains (see Fig. 1 (a)). For instance, CoNet (Hu,
Zhang, and Yang 2018) utilizes cross-connections net-
works to transfer information. To avoid the negative impact
caused by transferring domain-specific features, Disentan-
gled Cross-Domain Recommendation (DCDR) has gained
traction. The typical paradigm of DCDR is illustrated in
Fig. 1 (b). MADD (Zhang et al. 2023b) introduces an or-
thogonal loss to differentiate between domain-invariant and
domain-specific user features within intra-domains. Dis-
enCDR (Cao et al. 2022) employs variational inference for
disentanglement, relying on the Kullback-Leibler (KL) di-
vergence distance of user features.

However, we argue that the existing DCDR methods lead
to sub-optimal feature disentanglement due to three rea-
sons. Firstly, it is overlooked that each interaction carries an
individual underlying intent, implying that diverse interac-
tions play varying roles in generating disentangled features.
For example, when transferring knowledge from clothes
to books, purchasing a cotton skirt may enhance domain-
specific features more than domain-invariant features, as
cotton material is of little relevance to book recommenda-
tion. Neglecting the distinctiveness of interactions hinders
the model from capturing finer-grained disentangled rep-
resentations. Secondly, existing orthogonal loss or KL di-
vergence used for feature disentanglement only manipulate
user features regardless of items. The domain-specific and
domain-invariant user features are constrained to stay away
from each other (Fig. 1 (b)) whereas there is no guarantee on
their corresponding correlation to individual item. Yet, mod-
ern RSs collectively consider both user and item features for
practical recommendation, which implies the inefficiency
of existing feature disentanglement methods. Thirdly, even
with disentangled user representations in hand, effective
transfer of domain-invariant features remains a formidable
challenge. The diversity of user personalities highlights the
need for personalized cross-domain transfer, which is cur-
rently untouched in existing DCDR methods that simply
adopt weighted fusion or concatenation (Zhang et al. 2023a).

In this paper, we propose to address the above-mentioned
limitations through Graph Disentanglement and Contrastive
learning with meta-networks for CDR. Specifically, to cap-
ture interaction nuances and refine disentangled features,
we design an adaptive parameter-free filter in graph convo-
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Figure 1: Comparison of existing CDR methods.

lution. This filter gauges interaction significance based on
user-item similarity when generating disentangled features
(see the dashed arrow in the middle of Fig. 1 (c)). Leverag-
ing the effectiveness of contrastive learning (CL) in aligning
positive pairs and distinguishing negative pairs, we design
two distinct forms of CL for user feature disentanglement.
Proximate CL enhances the consistency of domain-invariant
features between domains while eliminatory CL disentan-
gles features using mutual information (MI) between users
and items within each domains (see the red arrows in the top
of Fig. 1 (c)). Finally, meta-networks are adopted to facili-
tate personalized transfer of domain-invariant features.
Our main contributions are summarized as follows:

e We propose a novel disentangled CDR model named
GDCCDR. To the best of our knowledge, we are the first
to introduce disentangled graph update to CDR.

e We formulate two contrastive learning-based constraints
to enhance disentanglement: one focuses on domain-
invariant features, while the other targets domain-specific
features by leveraging mutual information.

o We adopt meta-networks to facilitate personalized trans-
fer of domain-invariant features.

e We conduct extensive experiments on four real-world
CDR datasets to evaluate our proposed GDCCDR.

Related Work

Existing CDR can be roughly divided into two branches de-
pending on the way to transfer knowledge across domains,
which we call blended CDR and disentangled CDR.

Blended Cross-Domain Recommendation

Blended CDR methods mainly transfer and blend all in-
formation across different domains. CoNet (Hu, Zhang,
and Yang 2018) establishes a cross-connections network
between two domains to achieve knowledge transfer.
DDTCDR (Li and Tuzhilin 2020) proposes the latent or-
thogonal mapping functions of shared users. PPGN (Zhao,
Li, and Fu 2019) enhances transfer using multiple stacked
GNN layers for robust representations, while BITGCF (Liu
et al. 2020) designs a feature fusion module during GNNs
for better knowledge transfer. The indiscriminate feature
mixture brings the risk of negative transfer (i.e., transfer-
ring domain-specific user features). Consequently, several
disentanglement-based CDR approaches have arisen.
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Disentangled Cross-Domain Recommendation

Disentangled representations of user latent intents from im-
plicit feedback have received attention in recommender sys-
tems. In CDR, ATLRec (Li et al. 2020) uses MLPs to
extract domain-invariant and domain-specific features, em-
ploying a GRL-based domain discriminator to align domain-
invariant user features across domains. MADD (Zhang et al.
2023b) disentangle features within domains by orthogonal
constraints based on ATLRec. DisenCDR (Cao et al. 2022)
introduces variational inference to widen the gap in user fea-
tures within domains using KL divergence. DCCDR (Zhang
et al. 2023a), the latest method, employs two parallel GNNs
for disentanglement. While existing methods mainly focus
on user features, our approach uniquely includes mutual in-
formation of user and item features for disentanglement.

Contrastive Learning (CL) in CDR

Contrastive learning, a potent self-supervised technique, has
been used to tackle data sparsity in RS. CCDR (Xie et al.
2022) is the first to introduce CL into CDR, aiming to
achieve the consistency across domain representations for
the same user. DR-MTCDR (Guo et al. 2023) utilizes CL to
ensure the consistency of augmented views. UniCDR (Cao
et al. 2023) applies CL to user features before and after
masking. These CL-based CDR methods close all user fea-
tures across domains, including domain-specific information
that should remain distinct, leading to apparent flaws. DC-
CDR (Zhang et al. 2023a) tackles this issue by considering
only domain-invariant features. Unlike these methods, our
model employs two forms of CL for invariant and specific
features, respectively, to achieve desired disentanglement.

Methodology
Problem Definition and Notations

In this work, we focus on the CDR scenario with shared
users between two domains. Fig. 2 overviews the proposed
GDCCDR model. The user features are disentangled into
domain-invariant and domain-specific representations with
adaptive graph disentanglement and contrastive learning.
This facilitates personalized transfer of domain-invariant
features, thereby enhancing performance in both domains.
Two domains are denoted as D* and DB. U represents
the common set of users, V4 and V? represent the set of
items. Additionally, we represent two interaction matrices as
RA € RIUNVY and RE € RIUXVYl where the entry R;; = 1
indicates user 7 has interacted with item j, otherwise R;; = 0.

Disentangled Embedding Initialization. To model the
intricate user-item relationships, we embed them into a d-
dimensional vector space. We initially parameterize user and
item ID embeddings into independent embedding matrices:
uppercase Uy, U§ € R for users, and Vi € RIVxd

Vi e RV’ for items. Lowercase w; and v; denote indi-
vidual user i and item j embeddings. To guarantee the inde-
pendence of user domain-invariant (I) and domain-specific
(S) representations, distinct projections are used to map Uy
into separate vector spaces, which can be written as:

U, = UyoaUyW; +b)), Uy = Uyoo(UsWs +b5), (1)
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Figure 2: Overview of our GDCCDR model. Best viewed in color.

where * denotes the chosen D* or DF, U5’ and U};* are
user domain-invariant and domain-specific initial embed-
ding matrices. o(-) and © denote sigmoid activation func-
tion and element-wise multiplication. W;, W; € R%¢ and
by, b € R%! are the learnable projection and bias param-
eters. Our main focus is transferring user-invariant features,
without the need for slicing or projecting item embeddings.

Adaptive Graph Disentanglement

Message Propagation. Graph neural networks (GNNs)
are widely recognized for their broad application, such as in
DisenKGAT (Wu et al. 2021a) and KCRL (Nie et al. 2023),
and have become the dominate solution for recommender
systems, e.g., SGL (Wu et al. 2021b) and SimGCL (Yu et al.
2022). Drawing from these, we’ve devised our model using
graph-based message passing for representations. Without
loss of generality, we describe domain-invariant modeling,
with message propagation as follows:

Vin =R

V*,[

—~x,] -
U, =RV, (2)

where U;"I and VI*’I are the domain-invariant embeddings for
users and items in the I-th GNN layer. Uf)’l , Vg’l are initial
projection embeddings. Please note that Vi = VS” = VS’S.
R+ € RUXV'I denotes the normalized adjacent matrix de-
rived from R* calculated as: R* = (D*)(_l.l/2 SR (DY),

) @)
where (D*)(; and (D*);, are diagonal degree matrices.

Adaptive Parameter-Free Filter. Different from GNN-
based DCDR methods such as DCCDR, we argue that in-
teractions contribute differently to generating disentangled
features. When considering the clothing and book domains,
if user i purchases clothing item j due to a domain-specific
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factor, such as cotton material (which is less relevant to the
book domain), we can deduce that, in the clothing domain,
this purchase behavior is likely to contribute more to the
domain-specific features compared to domain-invariant fea-
tures. With this insight, we design an Adaptive Parameter-
Free Filter (APFF) that evaluates each interaction’s contri-
butions. It gauges the similarity between embeddings of u;
and v; based on domain-invariant and domain-specific rep-
resentations, without involving additional parameters. The
adaptive filter for each interaction during graph disentangle-
ment is computed as follows:

FG ) =o(s@i,vi)), cell,s), 3)
where s(-, -) measures the similarity, and in this case, we sim-
plify it to a dot product. A higher weight of ¥ (i, j) signifies
that the model assigns greater importance to the interaction’s
role in generating domain-specific or domain-invariant fea-
ture. Once the adaptive filter weights for all interactions are
obtained, we can adaptively update the graph for certain fea-
ture by element-wise multiplication of the original normal-
ized adjacent matrix R* with 7, € RV a5 follows:

Gl=RoF!, G°=RoF. )
After enhancing the adaptive graph, we combine it with

the message propagation scheme (Eq. 2) to obtain aug-
mented representations, formally described as follows:

U =6 Ve Vi=ge U )
Afterwards, residual connections are employed during ag-
gregation phase. The ultimate embeddings of each layer are:

U = U +a- U, Vi = Vlfl +a-Vy (6
where « is a hyper-parameter regulating the weight assigned
to the adaptive graph disentanglement.
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Information Aggregation. To capture valuable informa-
tion from higher-order neighbors, we further stack all em-
beddings from L graph layers to obtain the final embeddings:

L L
1 1
Ue=— YU, V= >V
L+1 4 ! L+1 4 ! 7

Hence, the final item embeddings are represented as:

V¥ = f(V*)I, V*,S) (8)
where f(-) is a feature fusion function. Here we utilize mean
operation and other functions can also be adopted.

Personalized Transfer across Domains

Given the effective domain-invariant features, existing meth-
ods apply weighted fusion (Zhu et al. 2020) or concatena-
tion (Zhang et al. 2023a) to transfer the domain-invariant
user features. However, real-world scenarios demonstrate
that the impact of these features varies from user to user.
For instance, some users may prioritize domain-invariant
attributes like price and quality, while others prioritize
domain-specific factors like brands. This diversity highlights
the need to personalize the cross-domain transfer based on
individual user preferences, which has never been explored
so far. To this end, we adopt meta-networks to generate per-
sonalized transfer matrices for users and items.

Meta Knowledge. Initially, we extract meta-knowledge
for personalized transfer from representations after GNN.
The user side involves both intra- and inter-domain details,
while the item side connects items and users. For example,
the transfer from D to DA is:
H = UM UR 0 )" v H = VA D @
JEN; ieN;

©)
where || denotes concatenation, while N; and N; are the
neighboring sets of nodes i and j. Hy, € R4 and H{ €
RY'X2 denote user and item meta-knowledge, encoding
contextual information for personalized knowledge transfer,
encompassing vital data essential for tailored transfers.

Meta Network. Inspired by (Chen et al. 2023a; Xia et al.
2021), we also employ a low-rank transformation to extract
parameterized transfer matrices. As an example, let’s recon-
sider the transfer from D? to D*:

Wi = Foip (Hp ). Wy = Fo (HY)

mlp

where Trfl’g and ¥, ?1: are personalized transfer matrices ex-
tractors with two tanh-activated fully-connected layers. By
restricting the transformation rank to k < d, the personal-
ized transfer matrices W/ € RI#X&k and W4 e R kxd
reduce trainable parameters. The final cross-domain transfer

features of the interaction between user i and item j are:
u;f}.r = whwiu + (11)
Subsequently, we integrate it with the original domain-
invariant features in 9" through weighted fusion, creating
the ultimate domain-invariant user features in D*:
wt =t gt (12)
where (B denotes the hyper-parameter which controls the
weight of personalized transfer features for each interaction.

(10)

BI
u;

~
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Contrastive Learning for Disentanglement

Another limitation of current DCDR method lies in how to
achieve thorough disentanglement of domain-invariant and
domain-specific features. In view of the great success of
Contrastive Learning (CL) in SSL addressing paired data,
we introduce two novel forms of CL for feature disentangle-
ment in CDR task.

Proximate CL. InfoNCE-based (Gutmann and Hyvérinen
2010) contrastive learning enhances the consistency in rep-
resenting different views of the same node (or entity), align-
ing with the perspective that the domain-invariant features
across domains should exhibit proximity. We treat domain-
invariant features transferred across domains for the same
user as positive pairs, and those from different users as neg-
ative pairs (the item subscripts are omitted for simplicity):

exp (¢ ', u")/7)

#,I % T
Zi’e’l,{ exp (¢ (lli > Wy, )/Tp)
where ¢ (-,-) measures representations similarity using co-
sine similarity function here; 7, is temperature coefficient.

L= Z —log

ieU

(13)

Eliminatory CL. Ideally, user feature disentanglement
implies thorough separation of domain-invariant informa-
tion in domain-specific features for recommendation. In
other words, it is unfeasible to recommend item based
on cross-domain-specific features. However, as mentioned
above, conventional approaches such as orthogonal or irrel-
evant loss put all the effort on the investigation of user fea-
tures while overlooking the crucial items, thus only achiev-
ing partial disentanglement.

In contrast, we propose eliminatory CL based on the mu-
tual information between users and the items for efficient
disentanglement. Specifically, in ©*, the mutual informa-
tion of its domain-specific features for items in D surpasses
that of D? for the same item:

?cl: Z —log

(i, )ERA*

exp (s(uf‘s , v_f/.‘))

exp (s(u?’s , V;‘)) + X, exp (s(ufl’s , V;‘))
(14)
where R4* are observed interactions in D4, s(-,-) is dot
product to measure MI and L denotes GNN layers. This for-
mula indicates that domain-specific scores of D* is higher
than domain-specific score of D for the items in D*.

Optimization Objectives
Following recent works (Zhao et al. 2022; Liu et al. 2022),
we adopt Bayesian Personalized Ranking (BPR), a pairwise
loss. Each training sample includes a positive observed item
Jj© and a negative unobserved item j~ for user i. BPR pro-
motes higher scores (§; ; = uf’F Vit u;.“’s v?) for j* than j:
L, =- Ino(3; ;+ =97 ) (15)
@.j*j) e 0
Finally, we combine the recommendation loss and the
self-supervised loss to derive the ultimate joint loss:
L= Ly 4 A Ly + A L+ 410 (16)
where 4,,, A, and 4; control the weights of £, L. and L,
regularization term, respectively.
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Experiments

We evaluate our GDCCDR on four real-world datasets and
analyze the following key research questions (RQs):

e RQ1: How does GDCCDR perform in comparison with
other representative and state-of-the-art methods?

e RQ2: Do the designed key components of our model
contribute to achieving performance improvement?

e RQ3: How does the performance of our model at various
levels of sparsity in user interaction data?

e RQ4: How does the performance of our method vary
with different hyper-parameter settings?

e RQS5: Does our model achieve desired disentanglement?

Experimental Settings

Datasets We evaluate GDCCDR on the Amazon dataset’,
specifically Sport&Phone, Sport&Cloth, Elec&Phone, and
Elec&Cloth. To ensure equitable comparisons, we prepro-
cess the original dataset following the BITGCF. Addition-
ally, we employ the DisenCDR to filter out cold-start items
from the test set, i.e., items without records in the training
set. Comprehensive dataset statistics are shown in Table 1.

Evaluation Protocols and Metrics We followed leave-
one-out strategy to evaluate our model wherein we sampled
one positive item (interacted) and 99 negative items (non-
interacted) for each user and predict 100 candidate scores for
ranking (Xue et al. 2017). And we use two widely adopted
metrics to evaluate all methods: Hit Ratio (HR) and Nor-
malized Discounted Cumulative Gain (NDCG). To ensure
reliability, each experiment is repeated five times, and the
average top-10 ranking results are reported.

Baselines To verify the effectiveness and the superiority of
our model, we compare GDCCDR with the following state-
of-the-art single-domain and cross-domain baselines.

(i) SDR methods: BPR (Rendle et al. 2012) is a classi-
cal method based on MF and optimized by pairwise rank-
ing loss. NCF (He et al. 2017) combines the linearity of
MF and the nonlinearity of MLPs to learn representations.
LightGCN (He et al. 2020) is a significant method which
simplifies the message passing rule of GNN to generate rep-
resentations. DCCF (Ren et al. 2023) stands as the forefront
intent disentanglement method in SDR.

(ii) CDR methods: CoNet (Hu, Zhang, and Yang 2018)
transfers knowledge through a cross-connections network
connecting two domains. DDTCDR (Li and Tuzhilin 2020)
seeks to learn a latent orthogonal mapping function to
transfer user preferences across domains. DML (Li and
Tuzhilin 2023) builds upon dual metric learning to enhance
DDTCDR. BITGCF (Liu et al. 2020) incorporates a fea-
ture transfer layer that facilitates feature fusion across do-
mains during graph convolution module. DisenCDR (Cao
et al. 2022) is a recent CDR model utilizing a variational in-
ference framework to disentangle user representations and
incorporates a feature fusion module to generate domain-
shared features. MADD (Zhang et al. 2023b) utilizes MLPs

Thttp://jmcauley.ucsd.edu/data/amazon/index_2014.html
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Datasets Users  Items  Ratings Density
Sport 4.998 20,837 54,256  0.052%
Phone ’ 13,666 46,448  0.068%
Sport 9928 30,761 100,903  0.033%
Cloth ’ 38,943 95,300 0.025%
Elec 3325 38,717 118,127  0.092%
Phone ’ 17,725 52,983  0.090%
Elec 15.761 51,399 224,641 0.028%
Cloth ’ 48,777 133,590 0.017%

Table 1: Statistics of four Amazon CDR datasets.

to extract both domain-invariant and domain-specific fea-
tures from pre-trained features. ETL (Chen et al. 2023b) em-
ploys equivalent transformations to capture overlapping and
domain-specific attributes, improving performance across
domains. DCCDR (Zhang et al. 2023a) incorporates two
parallel graph convolution modules for disentanglement,
while also being constrained with contrastive learning.

Implementation Details In our PyTorch implementation
of GDCCDR, we utilize the Adam optimizer (Kingma and
Ba 2015) and Xavier initializer. The embedding dimension
(d) is set to 128 for all methods, with a fixed learning rate
of 0.001, a batch size of 1024, and a dropout rate of 0.5.
The low-rank (k) is 10, the proximate temperature (7,) is
0.05, the L, regularization coefficient (1) is selected from
{0.05, 0.005, 0.0005}. The final embeddings of GNN-based
methods are obtained through mean pooling. For point-wise
loss, we have four negative samples per positive sample.

Experimental Results and Analysis

Performance Comparisons (RQ1). Table 2 shows the re-
sults of HR@10 and NDCG@10 for compared methods
across the four datasets. These experiments have yielded
some intriguing findings: (1) GNN-based methods, Light-
GCN and DCCEF, exhibit significant performance improve-
ments compared to BPR and NCF, indicating that incorpo-
rating higher-order neighborhood information enables more
effective learning of user and item representations. (2) CDR
methods generally outperform SDR methods, suggesting
that transferring useful information from other domains ef-
fectively alleviates the data sparsity problem. (3) DisenCDR
and ETL demonstrate satisfactory performance, implying
that incorporating variational inference into CDR can lead
to more robust user and item representations. (4) DCCDR
and DisenCDR outperform many CDR methods, highlight-
ing the importance of disentangling user features and trans-
ferring only domain-invariant features for enhanced perfor-
mance. (5) BITGCF emerges as the best-performing method
across all baselines, showcasing the effectiveness of cross-
domain knowledge transfer during graph convolution as a
powerful transfer strategy. (6) Compared to all state-of-the-
art methods, our method consistently achieves the highest
performance across four datasets. This indicates that our
method excels in efficiently disentanglement and personal-
ized transfer of domain-invariant features, resulting in supe-
rior recommendation performance.
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DataSets | Sport Phone | Sport Cloth | Elec Phone | Elec Cloth
Metrics | HR NDCG HR NDCG| HR NDCG HR NDCG| HR NDCG HR NDCG| HR NDCG HR NDCG
BPR [3520 2393 4242 28.31[29.64 18.73 24.39 14.46 |52.42 34.02 5259 36.29 [4542 29.11 22.18 13.11
NCF |43.01 2622 5228 3142|4047 23.85 39.84 24.40 [51.33 32.65 54.09 33.05|51.97 33.62 37.78 22.80
LightGCN | 47.71 33.02 57.10 38.88 [48.78 31.98 4296 27.35|59.62 39.52 62.55 43.67 |55.26 36.56 40.61 25.64
DCCF |48.98 30.99 57.76 36.07 |47.50 28.99 44.47 2757|5636 36.80 60.26 38.05 |54.51 36.07 42.73 26.07
CoNet |46.63 29.19 54.63 33.75 |43.07 2540 41.60 26.05 [56.41 36.04 59.45 37.47|53.88 3534 4225 24.97
DDTCDR | 45.52 27.32 56.59 34.67 |43.07 24.99 4347 2556 |56.91 36.28 59.21 36.91 |54.54 35.16 4248 24.84
DML |45.85 2844 56.97 3500 |42.92 25.00 42.84 2531|5743 36.83 59.85 37.01 |55.39 35.66 4246 24.82
MADD [45.64 2695 53.59 31.92 |4328 2528 43.53 25.86 |54.20 34.01 56.79 33.87 |54.44 3525 4245 24.87
ETL | 49.14 3128 5870 36.84 |47.82 29.90 4620 28.62 |61.23 40.37 62.76 41.72 |57.67 38.00 44.33 26.79
DisenCDR | 48.81 31.34 58.76 37.55 [46.10 27.68 45.06 27.23 |60.00 38.52 61.66 40.96 |56.76 36.92 44.62 26.95
DCCDR |49.15 33.80 58.15 40.01 [51.40 34.03 46.03 30.08 |61.51 41.28 63.82 44.62 |57.18 38.21 41.81 2639
BITGCF |52.57 35.87 58.40 39.39 |54.58 36.46 51.80 34.01 |62.98 42.65 65.03 44.93 |58.78 39.17 46.03 28.56
GDCCDR | 56.73 37.96 64.71 43.59 |59.67 40.76 54.73 37.58 |64.58 43.85 68.73 47.74 | 60.40 40.16 49.83 31.01
p-value |63 1.4e® 1.9¢75 2.8¢7 [6.4e75 440 4.8¢7 2.7¢*[2.3¢73 4.3¢73 3.0e73 23¢7*[4.3¢* 2.2¢* 8.1e 2.0e73

Table 2: Performance comparison (%) of different methods for four datasets based on HR@ 10 and NDCG @ 10. The best results
are bold, and the second-best results are underlined. The p-value is calculated from our proposed model and runner-up results.

Variants |  Sport Phone |  Sport Cloth
|HR NG HR NG|HR NG HR NG
GDCCDR‘56.73 37.96 64.71 43.59‘59.67 40.76 54.73 37.58

wjo-ecl |54.59 36.90 62.69 42.73|58.56 40.25 52.72 36.42
wjo-pcl 5589 37.51 64.07 43.04|54.88 35.69 51.40 32.52

w/o-apff |55.91 36.98 63.72 41.80|58.51 39.85 53.48 36.70
w/o-meta |55.47 37.21 63.79 42.69]56.13 36.82 52.63 33.94

Table 3: Ablation study on key components of GDCCDR.

Ablation Studies (RQ2). In this section, we conduct abla-
tion studies to verify the essential components of GDCCDR.
Specifically, w/o-ecl removes eliminatory contrastive learn-
ing on domain-specific features. w/o-pcl disables proximate
contrastive learning approximating the similarity of domain-
invariant features within inter-domains. w/o-meta replaces
meta network with average pooling, resulting in the failure
to attain personalized transfer knowledge. w/o-apff drops
the adaptive parameter-free filter, which consequently pre-
vents the possibility of adaptive graph update. Due to space
limitations, we report results on two datasets in Table 3.

GDCCDR outperforms w/o-ecl significantly, indicating
that excluding domain-invariant information from domain-
specific features through user and item mutual information
can achieve better disentanglement. w/o-pcl exhibits inferior
performance compared to GDCCDR, demonstrating the im-
portance of utilizing contrastive learning to align domain-
invariant features across domains. w/o-apff shows subopti-
mal performance, emphasizing the necessity of recognizing
each interaction’s contributions and employing a graph up-
date strategy during graph disentanglement. w/o-meta’s per-
formance degradation validates the idea that personalized
cross-domain knowledge transfer is needed. In summary,
each of the key modules in the GDCCDR has a role to play.
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Figure 3: Performance comparison (%) w.r.t data sparsity
over different user groups on the Elec&Cloth dataset.

Data Sparsity (RQ3). To assess the robustness of GDC-
CDR in addressing data sparsity issues compared to other
methods, we partition users into distinct groups based on the
number of interactions they exhibit within the training set.
Additionally, to further substantiate the preeminence of dis-
entanglement via mutual information, we impose irrelevant
constraints (Wang et al. 2020) on user domain-invariant and
domain-specific features instead of eliminatory contrastive
loss, named V-IR. Moreover, we introduce V-ND as a base-
line, aligned with conventional CDR methods that use a sin-
gle user representation without disentanglement. From the
results in Fig. 3, we derive two fundamental observations: (i)
Our model surpasses BITGCF and LightGCN for both inac-
tive and active users by leveraging contrastive learning for
thorough disentanglement and incorporating meta-networks
to facilitate efficient personalized knowledge transfer. (ii)
The performance gain of our model over V-IR, particularly
for inactive users, indicates that leveraging mutual informa-
tion between users and items for disentanglement is more
effective than relying solely on user features.

Hyper-parameter (RQ4). We investigate the effect of the
following hyper-parameters on two datasets: the eliminatory
CL factor A,, the proximate CL factor 4, the graph layers L,
the adaptive filter factor @ and the personalized transfer fac-
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Figure 4: Results (%) of different key hyper-parameters on the Sport&Phone dataset.
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Figure 5: Comparison (%) of the predictive ability of the
disentangled representations on the Elec&Phone dataset.

tor 8. The experimental results on Fig. 4 show that (1) De-
spite varying hyper-parameter impacts on different datasets,
all performances initially show an upward trend, further
proving the effectiveness of individual modules. (2) The per-
formance changes on A, and A, support the feasibility of
using contrastive learning for disentanglement. Proximate
CL enforces consistency among domain-invariant features,
while eliminatory CL eliminates domain-invariant informa-
tion from domain-specific features. (3) Optimal GNN layers
aggregate higher-order neighbor information, but excessive
layers cause over-smoothing issue, degrading recommenda-
tions. (4) An appropriate a-value enhances the model’s abil-
ity to explore interaction effects on various features, yielding
better disentangled representations. However, an excessively
large @ can cause the model to overly emphasize interaction
variability, resulting in performance decline. (5) Once per-
formance reaches the optimum, further increasing 8 doesn’t
significantly reduce model performance, demonstrating the
robustness of our model for personalized transfer.

Disentanglement Comparisons (RQS5). Feature disen-
tanglement lies at the core of our paper. For robust dis-
entanglement, domain-specific features must be devoid of
domain-invariant information aiding dual-domain predic-
tion, while maximizing the domain-invariant features for
transfer. To evaluate our model’s disentanglement abil-
ity, we compared it with state-of-the-art DCDR methods
in Fig. 5. V-rand employs randomly initialized user fea-
tures for prediction. V-spe utilizes cross-domain domain-
specific features (lower values indicating decreased domain-
invariant information within these features). V-inv relies
solely on domain-invariant features. Our findings show that
(1) Among the compared DCDR methods, only our V-spe
variant is lower than V-rand, suggesting that our domain-
specific features contain minimal information for predict-
ing other domains. (2) Our V-inv variant ranks the high-
est among all methods, showcasing the maximization of our
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Figure 6: Case study of significance nuances of interactions.
The user’s primary concerns about the item are in red.

domain-invariant features. These findings affirm the compre-
hensive disentanglement achieved by our model.

Case Study. We now explore the interpretability of signif-
icance nuances of interaction behaviors on the Elec&Phone
dataset. We randomly select two users u;o7g and u;sg;. From
Fig. 6, it is observed that our model gives higher signifi-
cance (i.e., the adaptive filter in Eq. 3 ) in terms of domain-
specific feature generation for interactions between ujg7g
and is4g2, I234. It also gives higher significance in terms of
domain-invariant feature generation for interactions between
domains u;sg; and 7749, i11074. Comments show u¢7g’s bias
towards intra-domain features like image quality, sound size,
and u;sg;’s bias towards inter-domain features like product
quality and price, which demonstrates that our model effec-
tively uncovers user intents from their historical behaviors.

Conclusion

In this paper, we propose a novel disentangled method for
cross-domain recommendation named GDCCDR to achieve
thorough feature disentanglement and personalized trans-
fer. Adaptive parameter-free filters are introduced to con-
trol each interaction’s significance on disentangled fea-
ture generation. Distinct from conventional disentanglement
approaches that only manipulate user features regardless
of items, two novel contrastive learning-based (CL) con-
straints are designed for item-aware disentanglement. Prox-
imate CL ensures the consistency of domain-invariant fea-
ture across domains, while eliminatory CL disentangles fea-
tures within each domains through mutual information be-
tween users and items. Additionally, meta-networks are em-
ployed for personalized transfer of domain-invariant fea-
tures. Ultimately, comprehensive experiments on four real-
world datasets demonstrate the superior performance of GD-
CCDR compared to state-of-the-art methods.
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